师资队伍

教师名录

肖龙飞

船舶与海洋工程系

办公电话:021-34208422
传真:021-34207058
电子邮件:xiaolf@sjtu.edu.cn
通讯地址:木兰楼B807室

博士,beat365体育官方网站特聘教授、博士生导师。1998年4月在beat365体育官方网站海洋工程国家重点实验室参加工作至今,历任助教、讲师、副教授、研究员、长聘教授和特聘教授。2010年3月至5月美国夏威夷大学土木与环境工程系访问学者,2013年8月至2014年8月、2015年10月至2016年2月英国Newcastle大学海洋科学与工程学院高级访问学者。现任国际ITTC海洋工程技术委员会主席,国际SCI期刊《Journal of OMAE》编委,中国造船工程学会船舶力学学术委员会委员。主要从事海洋工程水动力学的科研与教学工作,在新型深海平台水动力性能、深海平台系统模型试验方法、浅水系泊FPSO水动力性能、无网格波浪数值模拟方法等方向,积累了丰富的研究经验。主持承担国家自然科学基金重点项目1项、面上和青年项目4项,国家重点研发计划项目课题1项,国家863计划项目2项,国家重大科技专项子课题1项,上海市自然科学基金项目1项,国际合作科研项目11项。参与承担国家自然科学基金重点项目、国家863计划重大项目课题、国家重大科技专项子课题、上海市科委重大科研项目等国家和省部级项目30余项。合作出版编著1本、译著1本,发表学术论文240余篇,其中SCI论文80余篇,获得授权发明专利30余项,软件著作权4项。获2018年国家科技进步二等奖,2011年上海市科技进步一等奖,2012年海洋工程科学技术奖二等奖,2005年上海市科技进步三等奖,2005年上海市教学成果二等奖。获2019年上海市育才奖,2018年beat365体育官方网站教书育人奖一等奖,beat365体育官方网站第七届“凯原十佳”教师,2017年第十五届全国“挑战杯”特等奖指导教师。

(1)深海平台水动力性能
(2)深水模型试验方法及相关理论
(3)新型海洋资源开发装置

第29届国际拖曳水池会议(ITTC)海洋工程技术委员会委员
第28届国际拖曳水池会议(ITTC)环境模拟专业委员会委员
中国造船工程学会船舶力学学术委员会委员

  1. 国家自然科学基金重点项目深海平台极端海况模型实验环境识别与实型预报方法研究520310062021-2025

  2. 国家自然科学基金面上项目半潜式平台方形立柱波浪爬升抑制方案与性能研究518791582019-2022

  3. 国家重点研发计划课题沉船打捞作业风险控制2018YFC03097042018-2021

  4. 国家科技重大专项子课题深水浮式平台工程化设计试验证研究2016ZX05028-002-0042016-2020,副组长)

  5. 国家自然科学基金面上项目深吃水半潜式平台涡激运动激励机理与响应特性研究512791042013-2016

  6. 国家自然科学基金重点项目畸形波的动力学机理及其对深海平台强非线性作用研究512390072013-2017,参与)

  7. 工信部深水半潜式支持平台研发专项课题平台系泊及靠泊性能研究2017-2019,专题负责人)

  8. 工信部第七代超深水钻井平台(船)创新专项(2016-2020,参与)

  9. 工信部高技术船舶科研项目深海半潜式生产平台总体设计关键技术研究2013-2015,参与)

  10. 国家自然科学基金面上项目单点系泊FPSO水动力浅水效应机理508790452009-2011

  11. 国家自然科学基金项目深海平台混合模型实验方法505090152006

  12. 国家863计划十一五重大项目子课题超大型浮式结构物总体性能及水池模型试验研究2008AA09A1072008-2010

  13. 国家863计划项目软刚臂系泊系统动力特性研究2004AA6161802004-2005

  14. 国家科技重大专项子课题深水浮式平台实验研究2008ZX05026-002-042008-2010

  15. 上海市自然科学基金项目浅水波作用下的系泊FPSO动力响应07ZR140482007-2009

SCI Journal Papers:

  1. Li DY, Xiao LF, Wei HD*, Li J, Liu MY. Spatial-temporal Measurement of Waves in Laboratory Based on Binocular Stereo Vision and Image Processing. Coastal Engineering, 2022, 177: 104200. https://doi.org/10.1016/j.coastaleng.2022.104200

  2. Wei HD, Xiao LF*, Liu MY, Kou YF, Tian XL. Vulnerability criterion of nonlinear coupled resonance for semi-submersible platform using classification algorithm. Marine Structures, 2022, 83: 103183. https://doi.org/10.1016/j.marstruc.2022.103183

  3. Zhang NF, Xiao LF*, Guo YH, Yang LJ, Chen G. Parametric study of wave impact pressure impulse and characteristic pressure on a square column with overhanging deck. Ocean Engineering, 2022, 258: 111722. https://doi.org/10.1016/j.oceaneng.2022.111722

  4. Cao Q, Bachynski-Polić E E, Gao Z, Xiao LF*, Cheng ZS, Liu MY. Experimental and Numerical Analysis of Wind Field Effects on the Dynamic Responses of the 10MW SPIC Floating Wind Turbine Concept. Ocean Engineering, 2022, 261: 112151. https://doi.org/10.1016/j.oceaneng.2022.112151

  5. Liu J, Xiao LF, Yang LJ*, Liu MY. Experimental study on the effect of flare barriers on wave run-up and wave loads of a rounded-square column. Ocean Engineering, 2022, 260: 112045. https://doi.org/10.1016/j.oceaneng.2022.112045

  6. Li X, Wei HD*, Xiao LF, Peng T, Li Y, Liu J. Virtual model testing method for deepwater floating system. Ocean Engineering, 2022, 266(4): 113041. https://doi.org/10.1016/j.oceaneng.2022.113041

  7. Li Y, Peng T*, Xiao LF, Wei HD, Li X. Wave runup prediction for a semi-submersible based on temporal convolutional neural network. Journal of Ocean Engineering and Science, 2022. https://doi.org/10.1016/j.joes.2022.08.005

  8. Yang C, Cheng ZS*, Xiao LF, Tian XL, Liu MY, Wen BR. A gradient-descent-based method for design of performance-scaled rotor for floating wind turbine model testing in wave basins. Renewable Energy, 2022, 187: 144-155. https://doi.org/10.1016/j.renene.2022.01.068

  9. Cao Q, Xiao LF*, Cheng ZS, Liu MY. Dynamic responses of a 10MWsemi-submersible wind turbine at an intermediate water depth: A comprehensive numerical and experimental comparison. Ocean Engineering, 2021, 232: 109138. https://doi.org/10.1016/j.oceaneng.2021.109138

  10. Zhao GC, Xiao LF*, Yue ZY, Liu MY, Peng T, Zhao WJ. Performance characteristics of nodule pick-up device based on spiral flow principle for deep-sea hydraulic collection. Ocean Engineering, 2021, 226: 108818. https://doi.org/10.1016/j.oceaneng.2021.108818

  11. Wei HD, Xiao LF*, Liu MY, Kou YF. Data-driven model and key features based on supervised learning for truncation design of mooring and riser system. Ocean Engineering, 2021, 224: 108743. https://doi.org/10.1016/j.oceaneng.2021.108743

  12. Zhao GC, Xiao LF*, Hu JC, Liu MY, Peng T. Fluid flow and particle motion behaviors during seabed nodule pick-up: an experimental study. International Journal of Offshore and Polar Engineering, 2021, 31(2): 210-219. https://doi.org/10.17736/ijope.2021.jc803

  13. Guo YH, Xiao LF*, Wei HD, Li X, Li L, Deng YF. Classification and Comparison of Wave Impact Modes on Semi-Submersibles. China Ocean Engineering, 2021, 35(2): 161–175. https://doi.org/10.1007/s13344-021-0015-2

  14. Liu J, Xiao LF*, Yang LJ, Li J, Kou YF. Benchmark experimental study on wave run-ups of fixed four-rounded-square-column array in regular waves. Journal of Ocean Engineering and Science, 2022, 7(5): 419–430. https://doi.org/10.1016/j.joes.2021.09.016

  15. Zhao GC, Lu HN*, Xiao LF, Hu JC. Shape Effect of Polymetallic Nodules on Suction Forces and Flow Field During Seabed Hydraulic Collection. Journal of Offshore Mechanics and Arctic Engineering, 2022, 144(1): 011204. https://doi.org/10.1115/1.4052170

  16. Li Y, Zhang XT*, Xiao LF. Parametric study on power capture performance of an adaptive bistable point absorber wave energy converter in irregular waves. Journal of Ocean Engineering and Science, 2022, 7(4): 383-398. https://doi.org/10.1016/j.joes.2021.09.011

  17. Li X, Wei HD*, Xiao LF, Cheng ZS, Liu MY. Study on the effects of mooring system stiffness on air gap response. Ocean Engineering, 2021, 239: 109798. https://doi.org/10.1016/j.oceaneng.2021.109798

  18. Yue ZY, Zhao GC*Xiao LF, Liu MY. Comparative study on collection performance of three nodule collection methods in seawater and sediment-seawater mixture. Applied Ocean Research, 2021, 110: 102606. https://doi.org/10.1016/j.apor.2021.102606

  19. Yue ZY, Zhao GC*, Liu MY, Xiao LF. Experimental and Numerical Methods for Obtaining Flow Field Formed by Hydraulic Nodule Pick-up Devices. International Journal of Offshore and Polar Engineering, 2021, 31(3): 378−381. DOI 10.17736/ijope.2021.jc827

  20. Tian CL, Liu MY*Xiao LF, Gonçalves R T, Xie WH, Wang SS. Effects of the position of pipe-type appendages on the flow induced motions, energy transformation, and drag force of a TLP. Applied Ocean Research, 2021, 106: 102464. https://doi.org/10.1016/j.apor.2020.102464

  21. Jiang ZH, Wen BR, Chen G, Xiao LF, Li J, Peng ZK, Tian XL*. Feasibility studies of a novel spar-type floating wind turbine for moderate water depths: Hydrodynamic perspective with model test. Ocean Engineering, 2021, 233: 109070. https://doi.org/10.1016/j.oceaneng.2021.109070

  22. Tian CL, Liu MY*Xiao LF, Lu HN, Wang J. Numerical studies on flow-induced motions of a semi-submersible with three circular columns. International Journal of Naval Architecture and Ocean Engineering, 2021, 13: 599-616. https://doi.org/10.1016/j.ijnaoe.2021.06.005

  23. Zhang NF, Zhang XT*, Xiao LF, Wei HD, Chen WX. Evaluation of long-term power capture performance of a bistable point absorber wave energy converter in South China Sea. Ocean Engineering, 2021, 237: 109338. https://doi.org/10.1016/j.oceaneng.2021.109338

  24. Fang ZC, Xiao LF*, Wei HD, Liu MY, Guo YH. Severe wave run-ups on fixed surface-piercing square column under focused waves. Physics of Fluids, 2020, 32(6): 063308. https://doi.org/10.1063/5.0007001

  25. Cao Q, Xiao LF*, Cheng ZS, Liu MY, Wen BR. Operational and Extreme Responses of a New Concept of 10MW Semi-submersible Wind Turbine in Intermediate Water Depth: An Experimental Study. Ocean Engineering, 2020, 217: 108003. https://doi.org/10.1016/j.oceaneng.2020.108003

  26. Guo YH, Xiao LF*, Lu WY, Wei HD, Li L, Deng YF. Spatial distribution and interference of wave impact loads among structural components of a semi-submersible. Ocean Engineering, 2020, 212: 107671.  https://doi.org/10.1016/j.oceaneng.2020.107671

  27. Liu MY, Xiao LF*, Kou YF, Tian CL, Wei HD. Effects of column shape and configuration on the vortex-induced motions of semi-submersibles. Marine Structures, 2020, 72: 102773. https://doi.org/10.1016/j.marstruc.2020.102773

  28. Cao Q, Xiao LF*, Guo XX, Liu MY. Second-order responses of a conceptual semi-submersible 10 MW wind turbine using full quadratic transfer functions. Renewable Energy, 2020, 153: 653-668. https://doi.org/10.1016/j.renene.2020.02.030

  29. Liang YB, Tao L*, Xiao LF. Energy transformation on flow-induced motions of multiple cylindrical structures with various corner shapes. Physics of Fluids, 2020, 32: 027105. https://doi.org/10.1063/1.5131325

  30. Lu WY, Yang JM, Xiao LF, Guo XX, Li X*. Experimental investigation of wave run-up and air-gap responses. Ocean Engineering, 2020, 202: 107116. https://doi.org/10.1016/j.oceaneng.2020.107116

  31. Guo YH, Xiao LF*, Teng XQ, Kou YF, Liu JC. Processing method and governing parameters for horizontal wave impact loads on a semi-submersible. Marine Structures, 2020, 69: 102673. https://doi.org/10.1016/j.marstruc.2019.102673

  32. Wei HD, Xiao LF*, Low YM, Tian XL, Liu MY. Effects of bracings and motion coupling on resonance features of semi-submersible platform under irregular wave conditions. Journal of Fluids and Structures, 2020, 92: 102783. https://doi.org/10.1016/j.jfluidstructs.2019.102783

  33. Tian CL, Liu MY*, Xiao LF, Wang SS, LU HN. Experimental study on flow-induced motions of TLP focusing on effects of appendages and mass ratio. Ocean Engineering, 2020, 196: 106749. https://doi.org/10.1016/j.oceaneng.2019.106749

  34. Zhang XT*, Tian XL, Guo XX, Li X, Xiao LF. Bottom step enlarging horizontal momentum flux of dam break flow. Ocean Engineering, 2020, 214: 107729. https://doi.org/10.1016/j.oceaneng.2020.107729

  35. Lu WY, Zhao WH, Taylor P.H., Yang JM, Xiao LF, Li X*, Linearity and nonlinearity in wave run-up and air-gap response for a semi-submersible platform under irregular wave excitation. Applied Ocean Research, 2020, 104: 102218. https://doi.org/10.1016/j.apor.2020.102218

  36. Kou YF, Xiao LF*, Tao L, Peng T. Performance characteristics of a conceptual ring-shaped spar-type VLFS with double-layered perforated-wall breakwater. Applied Ocean Research, 2019, 86: 28–39. https://doi.org/10.1016/j.apor.2019.02.011

  37. Zhang XT, Tian XL, Xiao LF, Li X, Lu WY*. Mechanism and sensitivity for broadband energy harvesting of an adaptive bistable point absorber wave energy converter. Energy, 2019, 188: 115984.

  38. Wei HD, Xiao LF*, Tian XL, Low Y. Nonlinear coupling and instability of heave, roll and pitch motions of semi-submersibles with bracings. Journal of Fluids and Structures, 2018, 83: 171–193. https://doi.org/10.1016/j.jfluidstructs.2018.09.002

  39. Fang ZC, Xiao LF*, Kou YF, Li J. Experimental Study of the Wave-dissipating Performance of a Four-layer Horizontal Porous-plate Breakwater. Ocean Engineering, 2018, 151: 222–233. https://doi.org/10.1016/j.oceaneng.2018.01.041

  40. Fang ZC, Xiao LF*, Guo YH, Kou YF, Li J. Wave run-up on a fixed surface-piercing square column using multi-layer barrier. Applied Ocean Research, 2018, 71: 105–118. https://doi.org/10.1016/j.apor.2017.12.010.

  41. Wei HD, Xiao LF*, Tian XL, Feng W. Hybrid model testing using pre-offset and asymmetric truncation design for deepwater semi-submersible with highly compliant mooring system. Journal of Marine Science and Technology, 2018, 23(3): 536-556. https://doi.org/10.1007/s00773-017-0491-5.

  42. Zhao GC, Xiao LF*, Peng T, Zhang MY. Experimental Research on Hydraulic Collecting Spherical Particles in Deep Sea Mining. Energies, 2018, 11: 1938, 1-19. https://doi.org/10.3390/en11081938.

  43. Zhang XT*, Tian XL, Xiao LF, Li X, Chen LF. Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter. Applied Energy, 2018, 228: 450–467. https://doi.org/10.1016/j.apenergy.2018.06.100.

  44. Liu MY, Xiao LF*, Yang JM, Tian XL. Parametric study on the vortex-induced motions of semi-submersibles: Effect of rounded ratios of the column and pontoon. Physics of Fluids, 2017, 29(5): 055101. https://doi.org/10.1063/1.4983347.

  45. Liu MY, Xiao LF*, Liang YB, Tao LB. Experimental and numerical studies of the pontoon effect on vortex-induced motions of deep-draft semi-submersibles. Journal of Fluids and Structures, 2017, 72: 59–79.  https://doi.org/10.1016/j.jfluidstructs.2017.04.007.

  46. Tian XL, Xiao LF, Zhang XD, Yang JM*, Tao L, Yang D. Flow around an oscillating circular disk at low to moderate Reynolds numbers. Journal of Fluid Mechanics, 2017, 812: 1119-1145. https://doi.org/10.1017/jfm.2016.800.

  47. Lopez JJT, Tao L*, Xiao LF, Hu ZQ. Experimental Study on the Hydrodynamic Behaviour of an FPSO in a Deepwater Region of the Gulf of Mexico. Ocean Engineering, 2017, 129: 549566. https://doi.org/10.1016/j.oceaneng.2016.10.036.

  48. Xiao LF, Lu HN*, Tao L, Yang LJ. LH-moment estimation for statistical analysis on the wave crest distributions of a deepwater spar platform model test. Marine Structures, 2017, 52: 15-33. https://doi.org/10.1016/j.marstruc.2016.11.001.

  49. Xiao XL, Xiao LF*, Peng T. Comparative study on power capture performance of oscillating-body wave energy converters with three novel power take-off systems. Renewable Energy, 2017, 103: 94105. https://doi.org/10.1016/j.renene.2016.11.030.

  50. Wei HD, Xiao LF*, Tian XL, Kou YF. Four-level screening method for multi-variable truncation design of deepwater mooring system. Marine Structures, 2017, 51: 40–64. https://doi.org/10.1016/j.marstruc.2016.10.003.

  51. Fang ZC, Xiao LF*, Peng T. Generalized analytical solution to wave interaction with submerged multi-layer horizontal porous plate breakwaters. Journal of Engineering Mathematics, 2017, 105: 117–135. https://doi.org/10.1007/s10665-016-9886-2.

  52. Liang Y, Tao L*, Xiao LF, Liu MY. Experimental and numerical study on vortex-induced motions of a deep-draft semi-submersible. Applied Ocean Research, 2017, 67: 169–187. https://doi.org/10.1016/j.apor.2017.07.008.

  53. Liu MY, Xiao LF*, Lu HN, Xiao XL. Experimental study on vortex-induced motions of a semi-submersible with square columns and pontoons at different draft conditions and current incidences. International Journal of Naval Architecture and Ocean Engineering, 2017, 9: 326-338. https://doi.org/10.1016/j.ijnaoe.2016.11.003.

  54. Wu F, Xiao LF*, Liu MY, Tian XL. Research on the effects of in-line oscillatory flow to the Vortex Induced Motions of a Deep Draft Semi-submersible in currents. China Ocean Engineering, 2017, 31(3): 272–283. https://doi.org/10.1007/s13344-017-0032-3.

  55. Deng YF, Yang JM*, Zhao WH, Xiao LF, Li X. Surge motion of a semi-submersible in freak waves. Ships and Offshore Structures, 2017, 12(4): 443-451. https://doi.org/10.1080/17445302.2016.1149321.

  56. Xiao LF, Yang JM, Peng T, Tao L*. A free surface interpolation approach for rapid simulation of short waves in meshless numerical wave tank with RBF method. Journal of Computational Physics, 2016, 307, 203-224. https://doi.org/10.1016/j.jcp.2015.12.003.

  57. Xiao LF*, Lu HN, Li X, Tao L. Probability analysis of wave run-ups and air gap response of a deepwater semisubmersible platform using LH-moments estimation method. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2016, 142(2), 04015019. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000325.

  58. Xiao LF*, Kou YF, Tao L, Yang LJ. Comparative study of hydrodynamic performances of breakwaters with double-layered perforated walls attached to ring-shaped very large floating structures. Ocean Engineering, 2016,111: 279–291. https://doi.org/10.1016/j.oceaneng.2015.11.007.

  59. Liu MY, Xiao LF*, Lu HN, Shi JQ. Experimental investigation into the influences of pontoon and column configuration on vortex-induced motions of deep-draft semi-submersibles. Ocean Engineering, 2016, 123: 262–277. https://doi.org/10.1016/j.oceaneng.2016.07.007.

  60. Liu MY, Xiao LF*, Kou YF, Wu F. Experimental and numerical studies on the excitation loads and vortex structures of four circular section cylinders in a square configuration. Ships and Offshore Structures, 2016, 11(7): 734-746. https://doi.org/10.1080/17445302.2015.1056580.

  61. Liu S, Xiao LF*, Kou YF. Probability analysis and parameter estimation for nonlinear relative wave motions on a semi-submersible using the method of LH-moments. Ships and Offshore Structures, 2016, 11(7): 720-733. https://doi.org/10.1080/17445302.2015.1051282.

  62. Deng YF, Yang JM*, Zhao WH, Li X, Xiao LF. Freak wave forces on a vertical cylinder. Coastal Engineering, 2016, 114: 9–18. https://doi.org/10.1016/j.coastaleng.2016.03.007.

  63. Deng YF, Yang JM*, Tian XL, Li X, Xiao LF. An experimental study on deterministic freak waves: Generation, propagation and local energy. Ocean Engineering, 2016, 118: 83–92. http://dx.doi.org/10.1016/j.oceaneng.2016.02.025

  64. Zhang XT, Yang JM*, Xiao LF. An Oscillating Wave Energy Converter with Nonlinear Snap-Through Power-Take-Off Systems in Regular Waves. China Ocean Engineering, 2016, 30(4): 565 – 580. https://doi.org/10.1007/s13344-016-0035-5.

  65. Zhang XT, Yang JM*, Zhao WH, Xiao LF. Effects of wave excitation force prediction deviations on the discrete control performance of an oscillating wave energy converter. Ships and offshore structures, 2016, 11(4): 351-368. http://dx.doi.org/10.1080/17445302.2014.998858

  66. Xu X, Li X*, Yang JM, Xiao LF. Hydrodynamic Interactions of Three Barges in Close Proximity in a Floatover Installation. China Ocean Engineering, 2016, 30(3): 343 – 358. https://doi.org/10.1007/s13344-016-0023-9.

  67. Xiao LF*, Yang JM, Tao L, Li X. Shallow water effects on high order statistics and probability distributions of wave run-ups along FPSO broadside. Marine Structures, 2015, 41: 1-19. https://doi.org/10.1016/j.marstruc.2014.12.004.

  68. Liu MY, Xiao LF*, Yang LJ. Experimental investigation of flow characteristics around four square-cylinder arrays at subcritical Reynolds numbers. International Journal of Naval Architecture and Ocean Engineering, 2015, 7(5): 906-919. http://dx.doi.org/10.1515/ijnaoe-2015-0001.

  69. Zhang H, Yang JM*, Xiao LF, Lu HN. Large-eddy simulation of the flow past both finite and infinite circular cylinders at Re=3900. Journal of Hydrodynamics, 2015, 27(2): 195-203. http://dx.doi.org/10.1016/S1001-6058(15)60472-3.

  70. Deng YF, Yang JM*, Zhao WH, Xiao LF, Li X. An efficient focusing model of freak wave generation considering wave reflection effects. Ocean Engineering, 2015, 105: 125-135. http://dx.doi.org/10.1016/j.oceaneng.2015.04.058.

  71. Gu JY, Zhu XY, Yang JM, Lu YX, Xiao LF. Numerical Study on the 3-D Complex Characteristics of Flow Around the Hull Structure of TLP. China Ocean Engineering, 2015, 29(4): 535–550. http://dx.doi.org/10.1007/s13344-015-0037-8.

  72. Xiao LF*, Tao L, Yang JM, Li X. An experimental investigation on wave runup along the broadside of a single point moored FPSO exposed to oblique waves. Ocean Engineering, 2014, 88: 81–90. http://dx.doi.org/10.1016/j.oceaneng.2014.06.009.

  73. Zhang H, Yang JM*, Xiao LF. Damping ratio identification using a continuous wavelet transform to vortex-induced motion of a Truss Spar. Ships and Offshore Structures, 2014 9(6): 596–604. http://dx.doi.org/10.1080/17445302.2014.887173

  74. Zhang H, Yang JM*, Xiao LF, Lu HN. Study on added mass coefficient and oscillation frequency for a Truss Spar subjected to Vortex-Induced Motions. Ships and Offshore Structures, 2014, 9(1): 54-63. http://dx.doi.org/10.1080/17445302.2012.740873.

  75. Ma Y, Hu ZQ*, Xiao LF. Wind-wave induced dynamic response analysis for motions and mooring loads of a spar-type offshore floating wind turbine. Journal of Hydrodynamics, 2014, 26(6): 865-874. http://dx.doi.org/10.1016/S1001-6058(14)60095-0.

  76. Yang MD*, Teng B, Xiao LF, Ning DZ, Shi ZM, Qu Y. Full time-domain nonlinear coupled dynamic analysis of a truss spar and its mooring/riser system in irregular wave. Science China Physics, Mechanics & Astronomy, 2014, 57(1): 152-165. http://dx.doi.org/10.1007/s11433-013-5273-4.

  77. Zhao WH, Yang JM*, Hu ZQ, Xiao LF, Tao L. Hydrodynamics of a 2D vessel including internal sloshing flows. Ocean Engineering 2014; 84: 45–53. http://dx.doi.org/10.1016/j.oceaneng.2014.03.001.

  78. Cheng ZS, Yang JM*, Hu ZQ, Xiao LF. Frequency/time domain modeling of a direct drive point absorber wave energy converter. Science China Physics, Mechanics & Astronomy, 2014, 57(2): 311-320. http://dx.doi.org/10.1007/s11433-013-5200-8.

  79. Zhang H, Yang JM, Xiao, LF, Lu HN. Hydrodynamic performance of flexible risers subject to vortex-induced vibrations. Journal of Hydrodynamics, 2013, 25(1): 156-164. http://dx.doi.org/10.1016/S1001-6058(13)60349-2.

  80. Zhao WH, Yang JM, Hu ZQ, Xiao LF, Peng T. Experimental and numerical investigation of the roll motion behavior of a floating liquefied natural gas system. Science China Physics, Mechanics & Astonomy, 2013, (3): 629−644. http://dx.doi.org/10.1007/s11433-012-4914-3.

  81. Zhang L, Lu HN*, Yang JM, Peng T, Xiao LF. Low-frequency drift forces and horizontal motions of a moored FPSO in bi-directional swell and wind-sea offshore West Africa. Ships and Offshore Structures, 2013, 8(5):425-440. http://dx.doi.org/10.1080/17445302.2012.700564.

  82. Zhao, WH; Yang, JM; Hu, ZQ; Xiao, LF; Peng, T. Investigation on the Hydrodynamic Performance of An Ultra Deep Turret-Moored FLNG System. China Ocean Engineering, 2012, 26(1): 77−93.

  83. Zhao, WH; Yang, JM; Hu, ZQ; Xiao, LF. Experimental Investigation of the Effects of Inner-Tank Sloshing on Hydrodynamics of an FLNG System. Journal of Hydrodynamics, 2012, 24(1):107-115. http://dx.doi.org/10.1016/S1001-6058(11)60224-2

  84. Xiao, LF; Yang, JM; Peng T; Li J. A meshless numerical wave tank for simulation of nonlinear irregular waves in shallow water. Int. J. Numer. Meth. Fluids. 2009, 61(2): 165–184. http://dx.doi.org/10.1002/fld.1954

  85. Su, YH; Yang, JM; Xiao, LF. Hybrid Verification of a Deepwater Cell-Truss Spar. China Ocean Engineering, 2009, 23(1): 1 - 14.

  86. Xiao, LF; Yang, JM; Yang, LJ; Li, X. Theoretical Model and Dynamic Analysis of Soft Yoke Mooring System. China Ocean Engineering. 2008, 22(2): 195-204.

  87. Xiao, LF; Yang, JM; Li, X. Shallow Water Effects on Surge Motion and Load of Soft Yoke Moored FPSO. China Ocean Engineering, 2007, 21(2): 187-196.

  88. Zhang, HM; Yang, JM; Xiao, LF. Hybrid Model Testing Technique for Deep-Sea Platforms Based on Equivalent Water Depth Trunction. China Ocean Engineering, 2007, 21(3): 401-416.


著作
1. 杨建民,肖龙飞,葛春花. 船舶与海洋工程环境载荷(第二版). beat365体育官方网站出版社,2013.
2. 杨建民,肖龙飞,盛振邦. 海洋工程水动力学试验研究.beat365体育官方网站出版社,2008.

《工程学导论》,授课对象:本科生
《海洋可再生能源》,授课对象:本科生
《海洋工程环境载荷与水动力性能》,授课对象:本科生
《海洋工程水动力学》,授课对象:研究生

beat365体育官方网站第二届教书育人奖一等奖
beat365体育官方网站第七届“凯原十佳”教师
2017年第十五届全国“挑战杯”特等奖指导教师
全国大学生“小平科技创新团队”指导教师

版权所有 © 2014 beat·365(中国·体育)-官方网站 沪交ICP备05053   流量统计